3.2.56 \(\int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [156]

Optimal. Leaf size=127 \[ \frac {2 A \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \]

[Out]

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/4*(5*A-B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1
/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4007, 4005, 3859, 209, 3880} \begin {gather*} -\frac {(5 A-B) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 A \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - ((5*A - B)*ArcTan[(Sqrt[a]*Tan[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B)*Tan[c + d*x])/(2*d*(a + a*Sec[c +
 d*x])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4007

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-(b
*c - a*d))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[
e + f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {-2 a A+\frac {1}{2} a (A-B) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {A \int \sqrt {a+a \sec (c+d x)} \, dx}{a^2}-\frac {(5 A-B) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(2 A) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}+\frac {(5 A-B) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {2 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.
time = 26.85, size = 11183, normalized size = 88.06 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(553\) vs. \(2(106)=212\).
time = 4.60, size = 554, normalized size = 4.36

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (4 A \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+4 A \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sin \left (d x +c \right )+5 A \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )-B \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+5 A \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-B \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-2 A \left (\cos ^{2}\left (d x +c \right )\right )+2 B \left (\cos ^{2}\left (d x +c \right )\right )+2 A \cos \left (d x +c \right )-2 B \cos \left (d x +c \right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sin \left (d x +c \right ) a^{2}}\) \(554\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(4*A*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/co
s(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*sin(d*x+c)*cos(d*x+c)+4*A*arctanh(1/2*(-2*cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*sin(d*
x+c)+5*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)-B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/si
n(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)+5*A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-B*ln(-(-(-2*cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)
-2*A*cos(d*x+c)^2+2*B*cos(d*x+c)^2+2*A*cos(d*x+c)-2*B*cos(d*x+c))/(1+cos(d*x+c))/sin(d*x+c)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (106) = 212\).
time = 4.64, size = 548, normalized size = 4.31 \begin {gather*} \left [-\frac {4 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {2 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((5*A - B)*cos(d*
x + c)^2 + 2*(5*A - B)*cos(d*x + c) + 5*A - B)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x +
 c) + 1)) + 8*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a^2*d*co
s(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(2*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x
+ c)*sin(d*x + c) - sqrt(2)*((5*A - B)*cos(d*x + c)^2 + 2*(5*A - B)*cos(d*x + c) + 5*A - B)*sqrt(a)*arctan(sqr
t(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 8*(A*cos(d*x + c)^2 + 2*A*
cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________